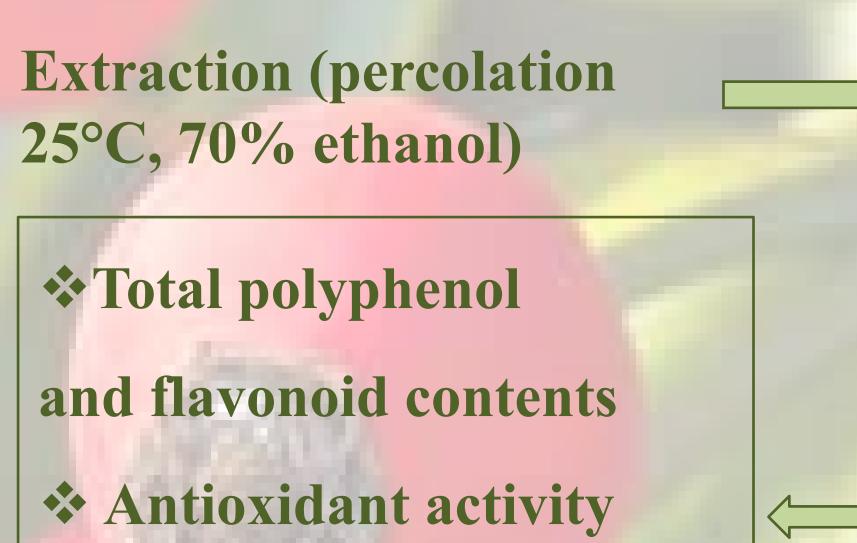
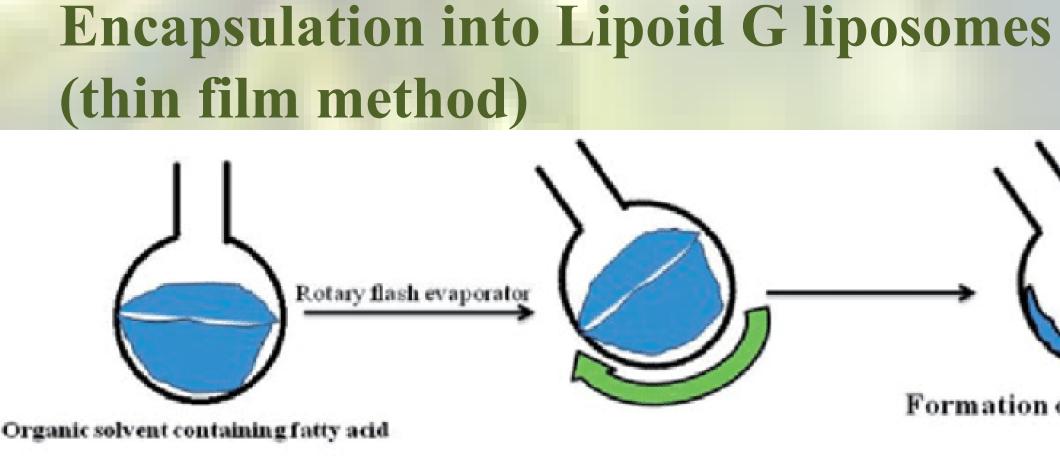
ENCAPSULATION OF ROSA CANINA EXTRACT IN LIPOSOMES PRODUCED BY THIN FILM METHOD

<u>Aleksandra, Jovanović¹, Bojana, Balanč¹, Milica, Trajković², Verica, Djordjević¹, Katarina, Šavikin³, Jelena, Živković³, Branko, Bugarski¹</u>

¹Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia, acancarevic@tmf.bg.ac.rs
²Hemofarm A. D., Beogradski put bb, 26300 Vršac, Serbia
³Institute for Medicinal Plants Research "Dr Josif Pančić", Tadeuša Košćuška 1, 11000 Belgrade, Serbia


A Contraction of the second se

In Institut "Dr Josif Pančić"


Introduction

HF Hemofarm

Rosa canina pseudo-fruit is rich in bioactive substances, such are carotenoids, ascorbic acid, polyphenols, fatty acids and minerals. Because of its diuretic, anti-inflammatory, anti-allergic and antioxidant properties it is

Materials and Methods

frequently employed in tradit medicine. However, in order to pre- mentioned bioactive compounds an improve its bioavailability controlled release, encapsul methods have been developed.	nd to and lation & Parti & Polyce	psulation efficiency cle size dispersity index potential Results and Discussion	Dispersion of fatt	y acid vesicles	Hy dration with appropriate pH	
TPC [m samples	ng GAE/g]	TFC [mg CE/g]	ABTS [mg	Trolox/g]	DPPH IC₅₀[r	ng/mL]
	.8±1.9	64.20±2.40	15.30±	2.10	1.07±0 .	01
liposomes+ extract 0.316	5±0.023	0.219±0.009	0.134±0	0.004	270.6±1	0.5
sample	EE [%]	Particle size [nm]	PDI	Zeta pote	ential [mV]	

bosomes+ 46.6±3.4 618.2±10.9	0.441±0.007	-10.24±0.95	
---------------------------------	-------------	-------------	--

TPC and TFC of the extract were 103.8±1.9 mg of GAE/g of the extract and 64.2±2.4 mg of CE/g of the extract, respectively; antioxidant potential of the extract was 15.3±2.1 mg of Trolox equivalents/g of the extract (ABTS assay) and 1.07±0.01 mg/mL of the extract (DPPH assay). TPC and TFC of the extract loaded liposomes were 0.316±0.023 mg of GAE/mg of lipids and 0.219±0.009 mg of CE/mg of lipids, respectively; antioxidant potential of the sample was 0.134±0.004 mg of Trolox equivalents/mg of lipids (ABTS assay) and 270.6±10.5 mg/mL of liposomal suspension (DPPH assay). EE was the same during monitoring period and it was amounted 46.6±3.4%. Particle size and polydispersity index of the liposomes with extract were increased from 618.2±10.9 to 1698.0±104.2 nm and from 0.441±0.007 to 0.589±0.011, respectively, during 30 days. On the other hand, zeta potential of the extract loaded liposomes was decreased from -10.24±0.95 to -7.21±0.77 mV.

Conclusion

R. canina extract loaded liposomes developed in this study have potential to be used in food, pharmacological and cosmetic industries due to beneficial health effects of *R. canina* active compounds encapsulated into liposomes.

The authors acknowledge their gratitude to the Ministry of Education, Science and Technological Development of

September

